EMPIRICAL RELATIONSHIPS BETWEEN ACTIVATION PARAMETERS AND SUBSTITUENT
CONSTANTS FOR STYRENE BROMINATION

By Jacques-Emile DUBOIS and May MARIE de FICQUELMONT-LOIZOS .

(Laboratoire de Chimie Organique Physique de l'Université de Paris VII, associé au C.N.R.S., 1, rue Guy de la Brosse, 75005 - PARIS - France).

(Received in UK 23 December 1975; accepted for publication 15 January 1976)

Although the isokinetic relationship is usually regarded as a necessary condition for a linear free energy relationship (1), numerous reactions do not satisfy this requirement at all. We shall show here that non-isokinetic behaviour is not contradictory, theoretically, with the existence of linear free energy relationships at several temperatures.

The activation parameters for the bromination of para-substituted styrenes in MeOH containing NaBr (Table I) were calculated from the second-order rate constant k_{Br_2} for addition of molecular bromine, which itself was extrapolated from the over-all experimental constants k_g measured at different NaBr concentrations (2,3). Although $\log k_{Br_2}$ (or ΔG^{\ddagger}) is linearly related to σ^{\ddagger} at all the temperatures investigated and although ρ varies linearly with T^{-1} , the reaction is neither isokinetic nor isoentropic nor isoenthalpic. Besides, neither ΔH^{\ddagger} nor ΔS^{\ddagger} vary linearly with σ^{\dagger} (Figure 1). However, the fact that ΔG^{\ddagger} is a linear function of σ^{\dagger} , i.e.:

[1]
$$\Delta G^{\dagger} = \Delta H^{\dagger} - T\Delta S^{\dagger} = A\sigma^{\dagger} + B$$

does not necessarily imply that ΔH^{\ddagger} and $T\Delta S^{\ddagger}$ are linear functions of σ^{\ddagger} . One may in fact assume that ΔH^{\ddagger} and $T\Delta S^{\ddagger}$ are, for example, of the form :

[2]
a)
$$\Delta H^{\dagger} = A_{1}\sigma^{\dagger} + B_{1} + f(\sigma^{\dagger})$$

b) $T\Delta S^{\dagger} = A_{2}\sigma^{\dagger} + B_{2} + f(\sigma^{\dagger})$

[3]
$$\Delta G^{\dagger} = (A_1 - A_2)\sigma^{\dagger} + (B_1 - B_2) = A\sigma^{\dagger} + B$$

Equations [2] could also be of the form : $\Delta H^{\dagger} = f(\sigma^{\dagger})$ and $T\Delta S^{\dagger} = A_2\sigma^{\dagger} + B_2 + f(\sigma^{\dagger})$ or vice versa

TABLE I:	Experimental value	es of the activ	ation parameters for	r the addition
	of molecular broa	nine to styrenes	$(p-R-C_6H_4-CH=CH_2)$	in methanol-NaBr.

R(σ [†])	ΔH [‡] (kcal/mole)	ΔS [‡] (e.u.)	ΔG [‡] (298 K) (kcal/mole)
p-MeO (-0.778)	5.29 ± 0.30	-10.83 ± 1.17	8.52
p-Me (-0.311)	5.91 ± 0.13	-19.08 ± 0.30	11.60
p-F (-0.073)	6.05 ± 0.16	-23.58 ± 0.40	13.07
н (0.00)	6.68 ± 0.61	-21.56 ± 1.95	13.11
p-C1 (+0.114)	10.28 ± 0.30	-12.17 ± 1.10	13.91
p-Br (+0.150)	8.64 ± 0.15	-18.50 ± 0.35	14.15

1.- DEPENDENCE OF ΔH^{\dagger} ON σ^{\dagger} : The experimental points tend to fall on a branch of a hyperbola of the form :

[4]
$$\Delta H^{\dagger} = \frac{a_0 + a_1 \sigma^{\dagger}}{a_0' + a_1' \sigma^{\dagger}} = \frac{b_0 + b_1 \sigma^{\dagger}}{b_2 + \sigma^{\dagger}}$$

where $b_2 \neq 0$ since ΔH^{\dagger} must remain finite when $\sigma^{\dagger} = 0$ (R-H). Coefficients b_1 were calculated using a classical mathematical method (4) and lead to the curve :

[5]
$$\Delta H^{\dagger} = 5.29 \frac{(\sigma^{\dagger} - 0.243)}{(\sigma^{\dagger} - 0.197)}$$

which is in excellent agreement with the rate data (Figure 1).

2.- DEPENDENCE OF TAS ‡ ON \odot^{\dagger} : Considering the expression of ΔH^{\ddagger} , TAS ‡ must be of the form :

[6]
$$T\Delta S^{\dagger} = A_{2}\sigma^{\dagger} + B_{2} + \frac{a_{0} + a_{1}\sigma^{\dagger}}{a_{0}^{\dagger} + a_{1}^{\dagger}\sigma^{\dagger}} = \frac{b_{0}^{\dagger} + b_{1}^{\dagger}\sigma^{\dagger} + b_{2}^{\dagger}(\sigma^{\dagger})^{2}}{b_{2} + \sigma^{\dagger}}$$

Calculation of coefficients b_1' and $b_2 = a_0'/a_1'$ (4) at T = 298 K leads to the expression :

[7]
$$T\Delta S^{\ddagger} = -5.707 \left[\frac{-0.234 + 1.184 \, \sigma^{+} + (\sigma^{+})^{2}}{\sigma^{+} - 0.197} \right]$$

This curve is also in good agreement with the experimental data (Figure 1).

Figure 1.- Substituent dependence of ΔH^{\ddagger} , $T\Delta S^{\dagger}$ and ΔG^{\ddagger} (T = 298 K) for the molecular bromination of styrenes in methanol-NaBr. (•: experimental points; full lines: calculated curves from [5], [7] and [9]).

Figure 2.- Calculated ΔH^{\ddagger} vs $T\Delta S^{\ddagger}$ (T = 298 K) curve for the molecular bromination of styrenes in methanol-NaBr. (\bullet : experimental points; ABC: calculated curve (increasing σ^{\dagger}).

3.- DEPENDENCE OF $\Delta G^{\frac{1}{2}}$ ON $\sigma^{\frac{1}{2}}$: From [5] and [7] we obtain equation [8]:

[8]
$$\Delta G^{\dagger} = 5.707 \ (\sigma^{+} + 2.299) \ \frac{(\sigma^{+} - 0.199)}{(\sigma^{+} - 0.197)}$$

which obviously simplifies to :

[9]
$$\Delta G^{\dagger} = 5.707 \, \sigma^{\dagger} + 13.120$$

The good agreement between [9] and the experimental equation [10], i.e. :

[10]
$$\Delta G_{\text{exp}}^{\dagger} = 5.992 \text{ s}^{+} + 13.290 \text{ (correlation coefficient = 0.997)}$$

supports the hypothesis that there is a function common to $\Delta \text{H}^{\ddagger}$ and $T\Delta \text{S}^{\ddagger}$.

 $4.-\Delta H^{\dagger}$ AS A FUNCTION OF TAS[†]: The curve ΔH^{\dagger} vs TAS[‡] plotted from the calculated curves [5] and [7] satisfactorily accounts for the experimental points (Figure 2). This clearly shows that these points are not to be plotted on two "straight-lines" (the one for the electron-donating and the other for the electron-attracting substituents) as one might think on the basis of the experimental values only.

In the case of styrene bromination, the empirical relationships for ΔH^{\ddagger} and $T\Delta S^{\dagger}$ are valid for the six para-substituted styrenes and the medium studied. The function $f(\sigma^{\dagger})$ common to ΔH^{\ddagger} and $T\Delta S^{\dagger}$ (or ΔS^{\dagger}) for other derivatives could be more complicated although ΔG^{\dagger} is expected to remain a linear function of σ^{\dagger} .

REFERENCES

- (1) See for example, O. EXNER, Progress in Physical Organic Chemistry, vol. 10, Edited by A. Streitwieser and R.W. Taft, Wiley, New York, 1973, p. 411, and references therein.
- (2) J.E. DUBOIS and M. MARIE de FICQUELMONT-LOÏZOS, to be published.
- (3) M. MARIE de FICQUELMONT-LOÏZOS, Doctoral Thesis, Paris, 1973, N° C.N.R.S., AO 8355, and references therein.
- (4) In equations [5] and [7] the value of 0.197 in the denominator is the arithmetic mean of the values 0.1966 and 0.1981 actually found for ΔH^{\ddagger} and $T\Delta S^{\ddagger}$. The other constants in these equations have been modified accordingly.